Gulbrandsen-Halle-Hulek degeneration and Hilbert-Chow morphism
نویسندگان
چکیده
For a semistable degeneration of surfaces without triple point, we show that two models Hilbert scheme points the family, Gulbrandsen-Halle-Hulek given in [GHH] and one by author [N], are actually isomorphic.
منابع مشابه
The Hilbert-Chow Morphism and the Incidence Divisor
For a smooth projective variety P of dimension n, we construct a Cartier divisor supported on the incidence locus in the product of Chow varieties Ca(P ) × Cn−a−1(P ). There is a natural definition of the corresponding line bundle on a product of Hilbert schemes, and we show this bundle descends to the Chow varieties. This answers a question posed by Barry Mazur. 2010 Mathematics Subject Classi...
متن کاملEquations for Chow and Hilbert Quotients
We give explicit equations for the Chow and Hilbert quotients of a projective scheme X by the action of an algebraic torus T in an auxiliary toric variety. As a consequence we provide GIT descriptions of these canonical quotients, and obtain other GIT quotients of X by variation of GIT quotient. We apply these results to find equations for the moduli space M0,n of stable genus zero n-pointed cu...
متن کاملThe Chow ring of punctual Hilbert schemes on toric surfaces
Let X be a smooth projective toric surface, and H(X) the Hilbert scheme parametrising the length d zero-dimensional subschemes of X . We compute the rational Chow ring A(H(X))Q. More precisely, if T ⊂ X is the twodimensional torus contained in X , we compute the rational equivariant Chow ring AT (H (X))Q and the usual Chow ring is an explicit quotient of the equivariant Chow ring. The case of s...
متن کاملChow Groups, Chow Cohomology, and Linear Varieties
We compute the Chow groups and Fulton–MacPherson’s operational Chow cohomology ring for a class of singular rational varieties including toric varieties. The computation is closely related to the weight filtration on the ordinary cohomology of these varieties. We use the computation to answer one of the open problems about operational Chow cohomology: it does not have a natural map to ordinary ...
متن کاملChow Quotients and Euler - Chow Series
Given a projective algebraic variety X, let p(X) denote the monoid of eeective algebraic equivalence classes of eeective algebraic cycles on X. The p-th Euler-Chow series of X is an element in the formal monoid-ring Z p(X)] ] deened in terms of Euler characteristics of the Chow varieties Cp;; (X) of X, with 2 p(X). We provide a systematic treatment of such series, and give projective bundle for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pure and Applied Mathematics Quarterly
سال: 2021
ISSN: ['1558-8599', '1558-8602']
DOI: https://doi.org/10.4310/pamq.2021.v17.n1.a11